

European Society of Clinical Microbiology and Infectious Diseases

Detektion von Carbapenemasen nach dem NAK-Algorithmus

Axel Hamprecht
Institut für medizinische Mikrobiologie u. Virologie

Inhalt

Carbapenemasedetektion bei Enterobakterien – warum?

Methoden

Entwicklung eines Algorithmus

Warum Carbapenemase-Detektion?

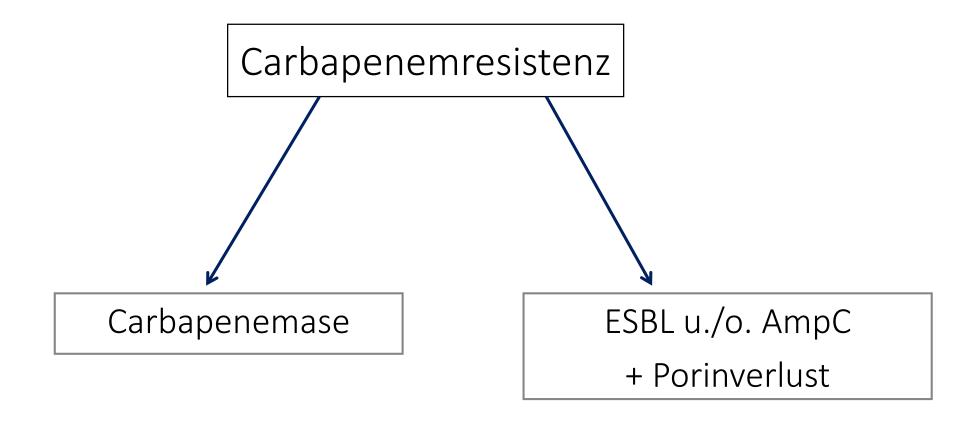
Nicht alle Carbapenemasen werden d. automatisierte Systeme erkannt Schlechteres Outcome bei Therapie mit Carbapenemen Schnelle Therapieanpassung Hygienemanagement Meldepflicht

Warum diese Leitlinie?

Nicht alle Labore haben Methoden zur Detektion von Carbapenemasen etabliert

Vielzahl an kommerziellen Methoden heute verfügbar Vorschlag zur Diagnostik

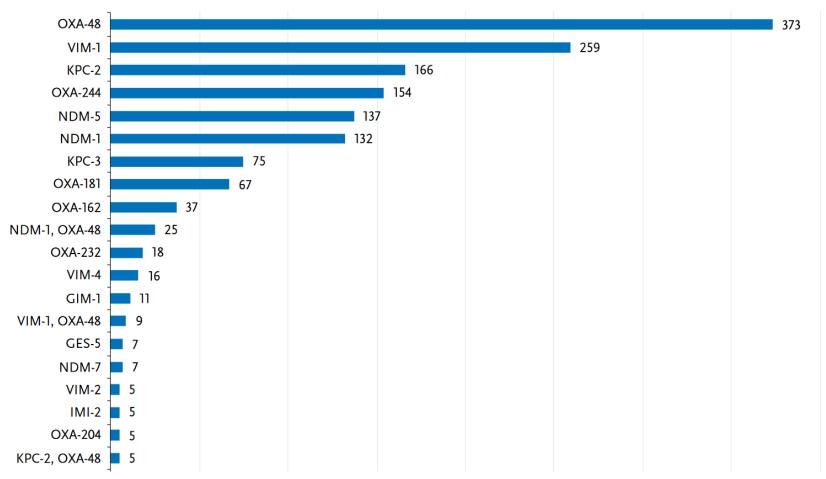
Empfehlungen zur Detektion von Carbapenemasen bei Enterobakterien (Enterobacterales)


A. Hamprecht, M. Kresken, D. Mack, E. Molitor, S. Gatermann

Inhalt

https://www.nak-deutschland.org/nak-dokumente/detektion-von-resistenzmechanismen/dokumente.html

DD Carbapenemresistenz


Carbapenemasen - Schwierigkeiten

Viele Carbapenemase-produzierende Stämme in D haben niedrige MHKs Häufigste Carbapenemasen in D

- OXA-48-like
- VIM
- NDM
- KPC

Carbapenemasen im NRZ Bochum 2020

Pfennigwerth N, Schauer J Epid Bull 2021;36:4 -1

Was muss ich bei der Resistenztestung beachten?

Idealerweise Ertapenem, Meropenem u. Imipenem testen Ertapenem: höchste Sensitivität/niedrigste Spezifität

Sind klin. Breakpoints ausreichend?

	S	1	R
Ertapenem	≤ 0,5		>0,5
Imipenem	≤ 2	4	>4
Meropenem	≤ 2	4-8	>8

251 Carbapenemase-bildende Enterobakterien, d. PCR+ WGS bestätigt

	Ertapenem ≤ 0,5 mg/L	Imipenem ≤ 2 mg/L	Meropenem ≤2 mg/L
Vitek	11,6 %	27,9 %	39,0 %

Screening Breakpoints v. EUCAST

Table 1. Clinical breakpoints and screening cut-off values for carbapenemase-producing Enterobacteriaceae (according to EUCAST methodology).

	NAIC (n	ng/L)	Disk diffusion zone diameter		
Carbapenem	MIC (n	ng/L)	(mm) with 10 μg disks		
	S/I breakpoint	Screening	S/I breakpoint	Screening cut-	
		cut-off		off	
Meropenem ¹	≤2	>0.125	≥22	<28 ²	
Ertapenem ³	≤0.5	>0.125	≥25	<25	

¹Best balance of sensitivity and specificity

EUCAST Detection of Resistance Mechanisms V 2.0 2017

²Isolates with 25-27 mm only need to be investigated for carbapenemase-production if they are resistant to piperacillin-tazobactam and/or temocillin (temocillin contributes more to the specificity). Investigation for carbapenemases is always warranted if zone diameter of meropenem is <25 mm.

³High sensitivity but low specificity. Can be used as an alternative screening agent, but isolates with ESBL and AmpC may be resistant without having carbapenemases.

NAK Screening-Grenzwerte

Ertapenem > 0,125 mg/L Meropenem > 0,125 mg/L Imipenem > 1 mg/L

UND

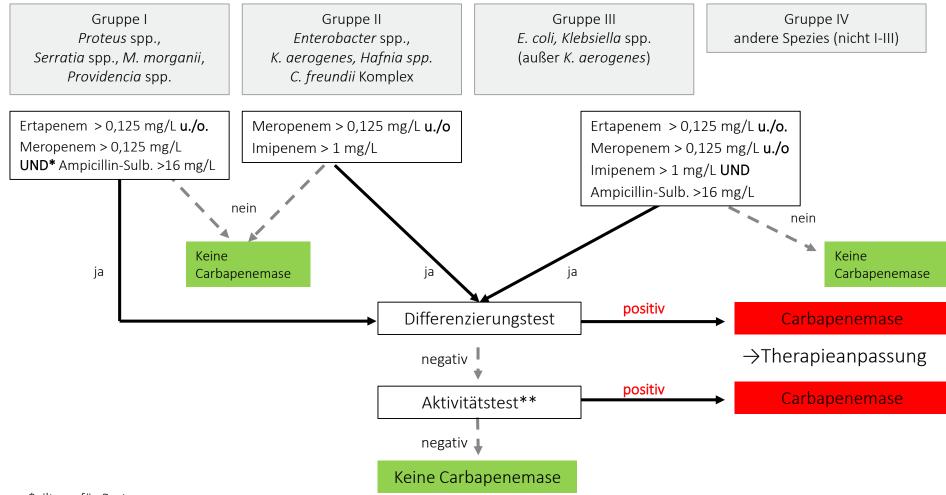
Ampicillin-Sulb. >16 mg/L

Speziesabhängig → Steigerung d. Spezifität

Screeningkriterien

	Cut-off (MHK)	Bemerkung
Gruppe I (Morganellaceae) Proteus spp. Serratia spp., M. morganii, Providencia spp.	Ertapenem > 0,125 mg/L u./o. Meropenem > 0,125 mg/L Bei <i>Proteus</i> spp. zusätzlich Ampicillin-Sulbactam >16 mg/L	Eine isolierte Imipenem-Resistenz ist nicht weiter abklärungsbedürftig
Gruppe II (AmpC-Bildner) Enterobacter spp., K. aerogenes, C. freundii complex Hafnia spp.	Meropenem > 0,125 mg/L u./o. Imipenem > 1 mg/L	AmpC ± ESBL und Porinveränderung häufig! Keine Berücksichtigung von Ertapenem
Gruppe III E. coli, Klebsiella spp. (außer K. aerogenes)	Ertapenem > 0,125 mg/L u./o. Meropenem > 0,125 mg/L u./o. Imipenem > 1 mg/L UND Ampicillin-Sulbactam > 16 mg/L	Bei Erfüllung der Kriterien häufig Vorliegen einer Carbapenemas
Gruppe IV (andere Spezies)	Ertapenem > 0,125 mg/L u./o. Meropenem > 0,125 mg/L u./o. Imipenem > 1 mg/L UND Ampicillin-Sulbactam > 16 mg/L	

Meßbereiche


MHK-Bereich: idealerweise bis unter Screening-Grenzwert

Falls automatisiertes System nicht bis zum Screening-BP misst – nächst höhere Stufe verwenden

erhöhte Carbapenem-MHKs (über den Screening-Cut-Off) d. 2. Verfahren bestätigen

Allgemeines Vorgehen

^{*}gilt nur für *Proteus* spp.

^{**}Bei positivem Aktivitätstests aber negativem/unklarem Differenzierungstest weitere Abklärung empfohlen (NRZ, WGS)

Welche Tests zur Carbapenemase-Bestätigung einsetzen?

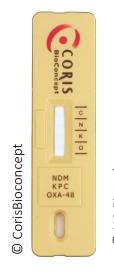
Jedes Labor sollte zwei verschiedene Tests etabliert haben:

- Test, der eine Differenzierung der wichtigsten Gruppen erlaubt
 → Therapiesteuerung
- Z. Test der Carbapenemase-Aktivität (unabhängig vom Genotyp)
 → seltene Carbapenemasen

Tests sollten validiert sein an klinischen Isolaten aus Deutschland Kein einzelnes Verfahren kann 100% aller Carbapenemasen detektieren!

Differenzierungstests

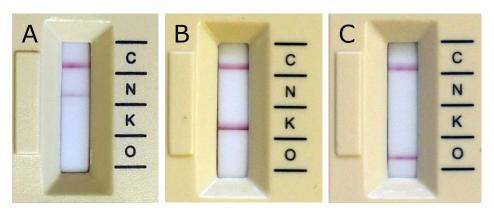
Differenzierungstests


Es sollten die 4 wichtigsten Gruppen differenziert werden können:

Klasse A Carbapenemasen (v.a. KPC)


Klasse B Carbapenemasen (MBLs, VIM, NDM, GIM)

Klasse D Carbapenemasen (Oxacillinasen, in D v.a. OXA-48-like)


Immunochromatographische Nachweisverfahren

immunochromatographischer Nachweis von KPC, NDM, VIM und OXA-48-like Carbapenemasen (± einige IMP-Varianten bei CARBA-5)

Sensitivität 99-100%, Spezifität 100%

sehr schnell (2-15 min)

Für NDM-/VIM-Nachweis müssen Bakterien von Agar mit ausreichendem Zink-Gehalt geerntet werden

Greissl C et al. Eur J Clin Microbiol Infect Dis. 2019 Feb;38(2):331-335

Rösner et al., J Med Microbiol. 2019 Mar;68(3):379-381

Immunochromatographische Tests

Derzeit zwei verschiedene Hersteller Coris Bioconcept/Belgien NG biotech/Frankreich

Inhibitoren-Test/Combination Disk Test

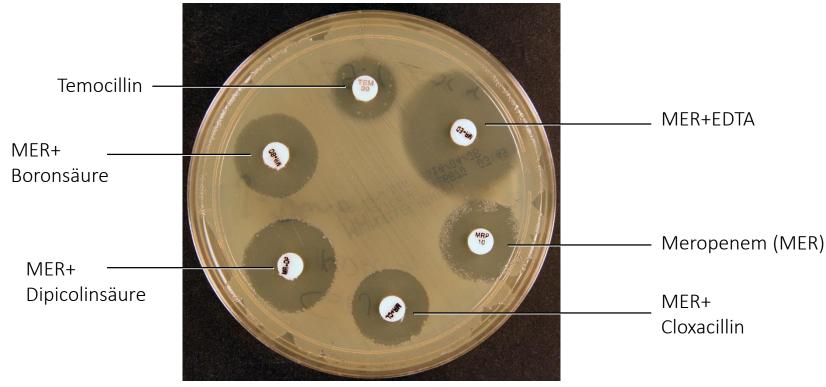
Prinzip: Hemmung der Carbapenemase-Aktivität durch Inhibitoren

→ Zunahme des Hemmhofdurchmessers

Erlaubt Rückschlüsse auf Typ der Carbapenemase (Metallo-/KPC)

Für OXA-48 gibt es keine Inhibitoren

"in house" oder kommerzielle Tests erhältlich


~16-20h

Inhibitoren-Test

Hemmhofvergrößerung durch

- EDTA/Dipicolinsäure → Metallo-β-Laktamase
-) (Aminophenyl-)Boronsäure → KPC
- ▶ Boronsäure UND Cloxacillin → AmpC [+Porinverlust]

Vergleich v. Inhibitorentests

	111	וווטונטופוונפטני	3	raropenem	ZCIIVI
	Value for test				
Parameter	MAST-CDT	ROS-CDT	LIO-CDT	FAR	zCIM
No. of true-positive isolates/total no. of isolates	91/106	91/106	102/106	105/106	104/106
Sensitivity (%) (CI)	86 (78-92)	86 (78–92)	96 (91–99)	99 (95–100)	98 (93-100)
No. of true-negative isolates/total no. of isolates	46/47	46/47	41/47	38/47	47/47
Specificity (%) (CI)	98 (89-100)	98 (89–100)	87 (74–95)	81 (67–91)	100 (92-100)
Youden index	0.84	0.84	0.83	0.80	0.98

Inhihitarantacta

Earonanam

MAST-CDT=Mastdiscs Combi Carba plus (MAST)

ROS-CDT=KPC/MBL and OXA-48 Confirm kit (Rosco)

LIO-CDT=KPC&MBL&OXA-48 disc kit (Liofilchem)

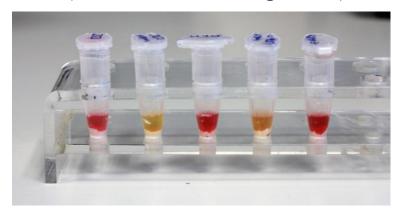
FAR=Faropenem (MAST)

zCIM=zink-supplementierter CIM-Test

→ Sensitivität d. Inhibitorentests 86-96%, Spezifität 87-98%

7(IN/

Aktivitätstests

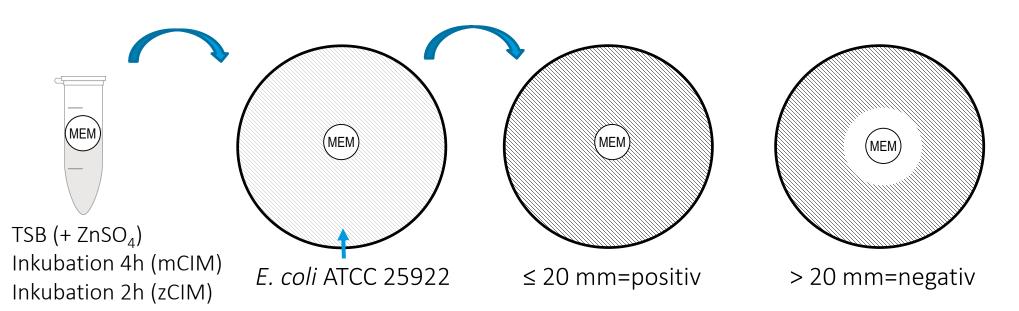


Aktivitätstests

Test, der eine Carbapenemase-Aktivität anzeigt unabhängig vom Genotyp → seltene Carbapenemasen: GIM, IMI, IMP, GES, OXA-58 etc.

Beispiele hierfür sind

- 1. Carbapenemase-Inaktivierungs-Methode (CIM), in verschiedenen Variationen
- 2. Colorimetrische Tests wie CARBA-NP Test, β-CARBA, Carba Blue u.a.
- 3. Hydrolysenachweis mittels MALDI-ToF
- 4. (Modifizierter Hodge Test)


CIM/mCIM/zCIM-Test

Weist Carbapenemase-Aktivität nach; günstig

Hohe Sensitivität/Spezifität (~98%/98-100% für zCIM^{1,2})

Lange Turn-around time (10-18 h)

Keine Unterscheidung d. Carbapenemase-Familien

¹Baeza et al., Clin Microbiol Infect. 2019 Oct;25(10):1286.e9-1286.e15 ²Sattler et al., J Clin Microbiol. 2021 Aug 18;59(9)

zCIM-Test

KPC-3

Carbapenemase-negativ

VIM-1

Baeza et al., Clin Microbiol Infect. 2019 Oct;25(10):1286.e9-1286.e15

Vergleich CIM-Varianten

			Cut-off				
Conditions	Sensitivity %	Specificity %	Positive	Indeterminate	Negative		
	(95 CI)	(95 CI)					
CIM (H ₂ O)	69.6	100	6 mm	-	> 6 mm		
	87.0	100	≤ 24 mm	-	>24 mm		
H ₂ O+ZnSO ₄	91.3	100	≤ 25 mm	-	> 25 mm		
mCIM (TSB)	84.8	100	≤ 15 mm or	16-18 mm w/o	> 18 mm		
			16-18 mm	MC or	(clear		
			with MC	> 18 mm with	inhibition		
				MC	zone)		
	93.5	100	≤ 23 mm	-	>23 mm		
zCIM	97.8	100	≤ 20 mm	-	> 20 mm		
(TSB+ZnSO ₄)							

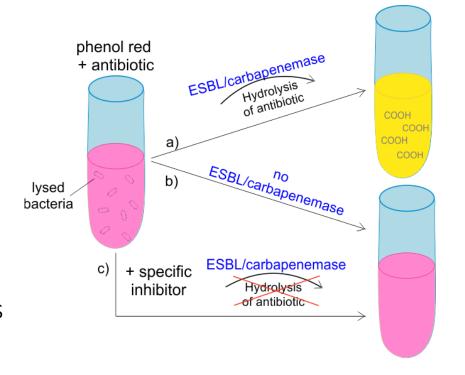
w/o: without; MC: microcolonies

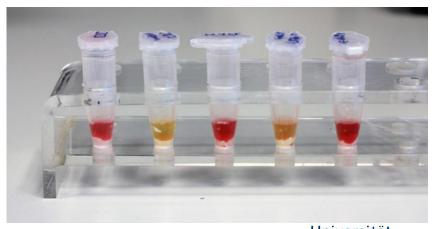
Baeza et al., Clin Microbiol Infect. 2019 Oct;25(10):1286.e9-1286.e15

Validierung an Routineproben

251 Carbapenemase-produzierende Enterobacteriaceae von 2012-2020 Sensitivität 248/251 (98,8%)

Falsch-negative

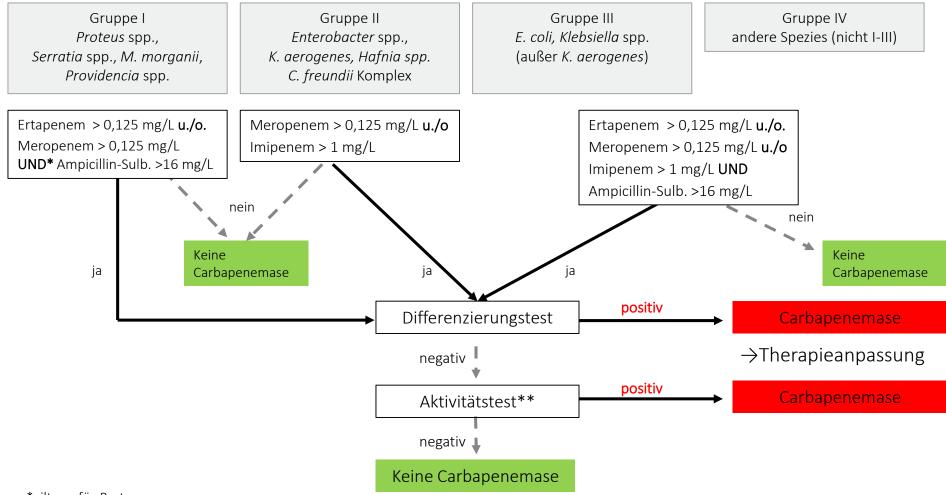

- > 2x OXA-244 (E. coli, K. pneumoniae)
- > 1x VIM (E. cloacae)
- → längere Inkubation 4h (analog mCIM)


Colorimetrische Tests

Hydrolyse von Carbapenem bewirkt pH-Änderung → Farbumschlag Relativ schnell (0,5-2h), gute Sensitivität (90-100%)

Funktioniert nicht von allen (Selektiv-)Agars Probleme bei OXA-48-like, IMI, GES Ablesung subjektiv Kommerzielle Tests teuer

Noster et al., Antibiotics 2021 21;10(9):1140

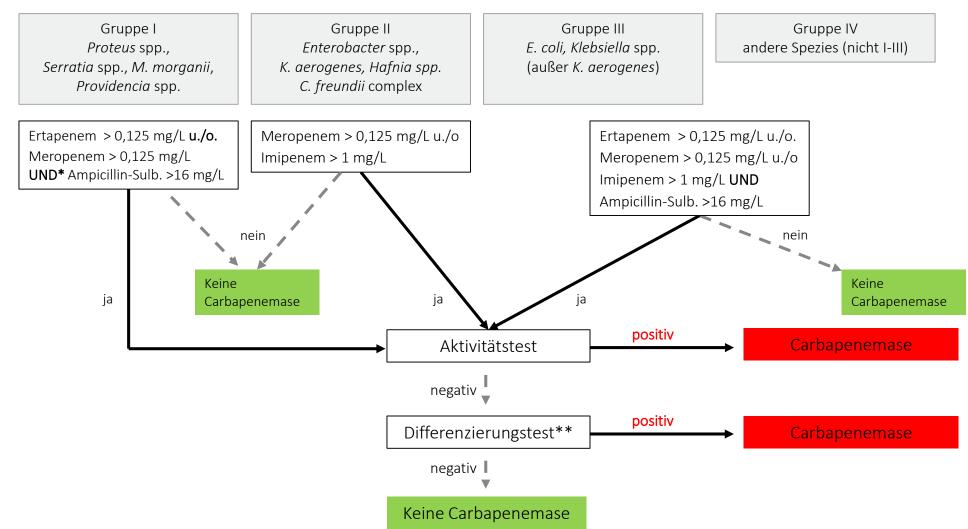

Vergleich Carbapenemasedetektion (n=152)

Isolate mit OXA-48-like, KPC, NDM, VIM, IMP, IMI, GES, OXA-58

	GenXpert (Cepheid)	CARBA-5 (NG)	OKNV (Coris)	zCIM (in house)	β-Carba (bioRad)
Prinzip	Real-time PCR	Immuno- chromatogr.	Immuno- chromatogr.	Hydrolyse- Assay	Colori- metrisch
Sensitivität (O-V-N-K)	100%	99.2%	98.5%	97.6%	76.6%
Sensitivität (alle CPE)	88,2%	88,2%	84,2%	97,4%	(73,7%)
Spezifität	100%	100%	100%	97,7%	100%

Baeza et al., Clin Microbiol Infect. 2019 Oct;25(10):1286.e9-1286.e15

Allgemeines Vorgehen – hohe klin. Relevanz



^{*}gilt nur für *Proteus* spp.

^{**}Bei positivem Aktivitätstests aber negativem/unklarem Differenzierungstest weitere Abklärung empfohlen (NRZ, WGS)

Niedrige klin. Relevanz oder niedrige Prätest-Wahrscheinlichkeit

^{*}gilt nur für Proteus spp.

^{**}Kann entfallen, falls niedrige Prätestwahrscheinlichkeit
Bei positivem Combination Disk Test oder bei unklaren Aktivitätstests weitere Bestätigung (PCR oder immunochromatograph. Test empfohlen).
Bei positivem Aktivitätstests aber unklarem Differenzierungstest weitere Abklärung empfohlen (NRZ, WGS)

Typische Resistenzen bei Carbapenemasen

	AMS	TZP	CAZ	FEP	TEM	AZT	MEM	IPM	CZA	FDC	Bemerkung
KPC											Typischerweise hohe Carbapenem- MHKs; Selten CZA-Resistenz
MBLs											Niedrige MHKs z.T. bei VIM, NDM;
(NDM,											AZT S, sofern nicht ESBL oder AmpC
VIM, GIM,											zusätzlich; CZA-Resistenz
IMP u.a.)											
OXA-48-											Niedrige Cephalosporin-MHKs,
Gruppe											MEM z.T. <2 mg/L, TZP meist > 64
											mg/L; TEM-Resistenz
OXA-48-											Carbapeneme z.T. < 2 mg/L;
Gruppe +											TZP meist > 64 mg/L
ESBL											
IMI											Oft in <i>E. cloacae</i> Komplex

Grün=typischerweise empfindlich

Gelb= variable Empfindlichkeit

Rot= typischerweise liegt eine Resistenz vor

AMS= Ampicillin-Sulbactam; TZP=Piperacillin-Tazobactam; CAZ=Ceftazidim; FEP=Cefepim; TEM=Temocillin; AZT=Aztreonam; MEM=Meropenem; IPM=Imipenem; CZA=Ceftazidim-Avibactam; FDC=Cefiderocol; S=sensibel

Zusammenfassung

2-stufiger Algorithmus zur Detektion von Carbapenemasen

Differenzierungstest \rightarrow häufige Carbapenemase, schnelle Therapieanpassung

Aktivitätstest → seltene Carbapenemasen

Für Isolate aus D evaluiert

Meisten Carbapenemasen werden mit 2-stufigem Algorithmus detektiert

Speziesabhängige Screeningkriterien steigern Spezifität

Algorithmus kann angepasst werden an Dringlichkeit/Prätest-

Wahrscheinlichkeit u. vorhandene Methoden

in jedem Labor durchführbar

Danke für Ihre Aufmerksamkeit

